CRAY מציגה מחשב על חזק במיוחד ודי גדול המבוסס על מעבדי Cavium ThunderX2 64bit ARMv8-A processor,
עד 10000 CORES
קפיצה רגל ענקית והתקדמות טכנולוגית מהותית ביותר
זה יאפשר מחקר רב ערב הדורש כוחות עיבוד חזקים במיוחד
המרואין הוא סיימון מקינטוש סמיט חוקר על בעל יחוס למשחבי מקינטוש
זה על שמו .
הקהילה מחזיקה בשרתים מסוגי זה לצרכי מחקר .
המהירות של ההתקדמות היא עצומה
זה לקפוץ מאופניים לחללית .
היפנים הסינים מתחרים עם הבריטים למי יש יותר גדול .
המהפכה הזאת מגיעה גם לארה"ב וישראל לוקחת בזב גם חלק
לאינטל יש ממה לדאוג מדובר במחשבי על חזקים במיוחד .
זה 30% יותר מהר מאינטל
[You must be registered and logged in to see this image.]
Cray announces the world’s first production-ready ARM Powered supercomputer based on the Cavium ThunderX2 64bit ARMv8-A processor, added to the Cray XC50 supercomputer enabling the world’s most flexible supercomputers, available in both liquid-cooled cabinets and air-cooled cabinets, to be available in the second quarter of 2018. Featuring a full software environment, including the Cray Linux Environment, the Cray Programming Environment, and ARM-optimized compilers, with ARM's upcoming SVE technology as the most efficient path to achieving the vision of exascale, ARM libraries, and tools for running today’s supercomputing workloads, with the Cray Aries interconnect. Cray's enhanced compilers and programming environment achieves more performance out of the Cavium ThunderX2 processors, up to 20 percent faster performance compared with other public domain ARMv8 compilers such as LLVM and GNU.
[You must be registered and logged in to see this image.]
Cray is currently working with multiple supercomputing centers on the development of the ARM-based supercomputing systems, including various labs in the United States Department of Energy and the GW4 alliance, a coalition of four leading, research-intensive universities in the UK. Through an alliance with Cray and the Met Office in the UK, GW4 is designing and building “Isambard,” an Arm-based Cray XC50 supercomputer. The GW4 Isambard project aims to deliver the world’s first Arm-based, production-quality HPC service. My video includes an interview with Professor Simon McIntosh-Smith from the University of Bristol who says that Ease of use, robustness, and performance, are all critical for a production service, and their early experiences with Cray’s ThunderX2 systems and end-to-end ARM software environment are very promising. All of the real scientific codes they’ve tried so far have worked out of the box, and they’re also seeing performance competitive with the best in class. Having access to Cray’s optimized HPC software stack of compilers and libraries in addition to all of the open-source tools has been a real advantage.
[You must be registered and logged in to see this image.]
Cavium ThunderX2 production systems now available
Cavium announces ThunderX2 ARM Server systems now available for customers in server and high performance Supercomputing, partners include Bull/Atos, Cray, Gigabyte, Penguin, Ingrasys/Foxconn and HPE. After 7 years of work by partners in the ARM Server ecosystem (and 7 years of my ARM Server video-blogging), now is finally the time high performance ARM Server systems are launched for cloud computing, high performance computing markets worldwide. The Cavium ThunderX2 server SoC integrates fully out-of-order, high-performance custom cores supporting single and dual-socket configurations. ThunderX2 is optimized to drive high computational performance delivering outstanding memory bandwidth and memory capacity. The new line of ThunderX2 processors includes multiple SKUs for both scale up and scale out applications and is fully compliant with Armv8-A architecture specifications as well as the Arm Server Base System Architecture and Arm Server Base Boot Requirements standards.
ThunderX2 SoC family is supported by a comprehensive software ecosystem ranging from platform level systems management and firmware to commercial Operating Systems, Development Environments and Applications. Cavium has actively engaged in server industry standards groups such as UEFI and delivered numerous reference platforms to a broad array of community and corporate partners. Cavium has also demonstrated its leadership role in the Open Source software community driving upstream kernel enablement and toolchain optimization, actively contributing to Linaro’s Enterprise and Networking Groups, investing in key Linux Foundation projects such as DPDK, OpenHPC, OPNFV and Xen and sponsoring the FreeBSD Foundation’s Armv8 server implementation.
HPE unveils The Machine, Apollo 70, Cavium ThunderX2 ARM HPC Supercomputing platforms
HP Enterprise unveils their HPC optimized Cavium ThunderX2 ARM Powered High Performance Computing platforms, the Apollo 70 is a disruptive ARM HPC processor technology with maximum memory bandwidth, familiar management and performance tools, and the density and scalability required for large HPC cluster deployments. And then HPE Labs unveils The Machine which is also powered by a Cavium ThuderX2, it is HPE's vision for the future of computing [You must be registered and logged in to see this link.] as by 2020, one hundred billion connected devices will generate far more demand for computing than today's infrastructure can accommodate.
The Machine is a custom-built device made for the era of big data. HPE says it has created the world’s largest single-memory computer. The R&D program is the largest in the history of HPE, the former enterprise division of HP that split apart from the consumer-focused division. If the project works, it could be transformative for society. But it is no small effort, as it could require a whole new kind of software. HPE's prototype can accomodate up to 160 terabytes of memory, capable of simultaneously working with the data held in every book in the Library of Congress five times over — or approximately 160 million books. According to HPE, it has never been possible to hold and manipulate whole data sets of this size in a single-memory system, and this is just a glimpse of the immense potential of Memory-Driven Computing. Following the GenZ Consortium's vision, based on the current prototype, HPE expects the architecture can scale to an exabyte-scale single-memory system and, beyond that, to a nearly limitless pool of memory — 4,096 yottabytes. For context, that is 250,000 times the entire digital universe today. With that amount of memory, HPE said it will be possible to simultaneously work with every digital health record of every person on earth, every piece of data from Facebook, every trip of Google’s autonomous vehicles, and every data set from space exploration all at the same time — getting to answers and uncovering new opportunities at unprecedented speeds.